PeakTech®

Unser Wert ist messbar...

PeakTech® 3340

Bedienungsanleitung / Operation manual

Digital - Multimeter

1. Sicherheitshinweise

Dieses Produkt erfüllt die Anforderungen der folgenden Richtlinien der Europäischen Union zur CE-Konformität: 2014/30/EU (Elektromagnetische Verträglichkeit), 2014/35/EU (Niederspannung), 2011/65/EU (RoHS).

Überspannungskategorie III 600V; Verschmutzungsgrad 2.

CAT I: Signalebene, Telekommunikation, elektronische Geräte mit

geringen transienten Überspannungen

CAT II: Für Hausgeräte, Netzsteckdosen, portable Instrumente etc.

CAT III: Versorgung durch ein unterirdisches Kabel; Festinstallierte Schalter, Sicherungsautomaten, Steckdosen oder Schütze

CAT IV: Geräte und Einrichtungen, welche z.B. über Freileitungen versorgt werden und damit einer stärkeren Blitzbeeinflussung ausgesetzt sind. Hierunter fallen z.B. Hauptschalter am Stromeingang. Überspannungsableiter. Stromverbrauchszähler

und Rundsteuerempfänger

Zur Betriebssicherheit des Gerätes und zur Vermeidung von schweren Verletzungen durch Strom- oder Spannungsüberschläge bzw. Kurzschlüsse sind nachfolgend aufgeführte Sicherheitshinweise zum Betrieb des Gerätes unbedingt zu beachten.

Schäden, die durch Nichtbeachtung dieser Hinweise entstehen, sind von Ansprüchen jeglicher Art ausgeschlossen.

- * WARNUNG! Dieses Gerät darf nicht in hochenergetischen Schaltungen verwendet werden.
- * maximal zulässige Eingangsspannung von 600V DC oder AC nicht überschreiten.
- * maximal zulässige Eingangswerte unter keinen Umständen überschreiten (schwere Verletzungsgefahr und/oder Zerstörung des Gerätes)
- * Die angegebenen maximalen Eingangsspannungen dürfen nicht überschritten werden. Falls nicht zweifelsfrei ausgeschlossen werden kann, dass diese Spannungs-spitzen durch den Einfluss von transienten Störungen oder aus anderen Gründen überschritten werden muss die Messspannung entsprechend (10:1) vorgedämpft werden.

- * Nehmen Sie das Gerät nie in Betrieb, wenn es nicht völlig geschlossen ist
- * Defekte Sicherungen nur mit einer dem Originalwert entsprechenden Sicherung ersetzen. Sicherung oder Sicherungshalter **niemals** kurzschließen.
- * Vor dem Umschalten auf eine andere Messfunktion Prüfleitungen oder Tastkopf von der Messschaltung abkoppeln.
- * Keine Spannungsquellen über die mA, A und COM-Eingänge anlegen. Bei Nichtbeachtung droht Verletzungsgefahr und/oder die Gefahr der Beschädigung des Multimeters.
- * Der 10A-Bereich ist durch eine Sicherung abgesichert. Strommessungen nur an Geräten mit entsprechender Absicherung durch Sicherungsautomaten oder Sicherungen (10A oder 2000VA) vornehmen.
- * Bei der Widerstandsmessungen keine Spannungen anlegen!
- * Keine Strommessungen im Spannungsbereich (V/Ω) vornehmen.
- * Gerät, Prüfleitungen und sonstiges Zubehör vor Inbetriebnahme auf eventuelle Schäden bzw. blanke oder geknickte Kabel und Drähte überprüfen. Im Zweifelsfalle keine Messungen vornehmen.
- * Messarbeiten nur in trockener Kleidung und vorzugsweise in Gummischuhen bzw. auf einer Isoliermatte durchführen.
- * Messspitzen der Prüfleitungen nicht berühren.
- * Warnhinweise am Gerät unbedingt beachten.
- * Bei unbekannten Messgrößen vor der Messung auf den höchsten Messbereich umschalten.
- * Gerät keinen extremen Temperaturen, direkter Sonneneinstrahlung, extremer Luftfeuchtigkeit oder Nässe aussetzen.
- * Starke Erschütterung vermeiden.
- * Gerät nicht in der Nähe starker magnetischer Felder (Motoren, Transformatoren usw.) betreiben.
- * Heiße Lötpistolen aus der unmittelbaren Nähe des Gerätes fernhalten.
- * Vor Aufnahme des Messbetriebes sollte das Gerät auf die Umgebungstemperatur stabilisiert sein (wichtig beim Transport von kalten in warme Räume und umgekehrt)
- * Überschreiten Sie bei keiner Messung den eingestellten Messbereich. Sie vermeiden so Beschädigungen des Gerätes.
- * Drehen Sie während einer Strom oder Spannungsmessung niemals am Messbereichswahlschalter, da hierdurch das Gerät beschädigt wird.

- * Messungen von Spannungen über 35V DC oder 25V AC nur in Übereinstimmung mit den relevanten Sicherheitsbestimmungen vornehmen. Bei höheren Spannungen können besonders gefährliche Stromschläge auftreten.
- * Ersetzen Sie die Batterie, sobald das Batteriesymbol "BAT" aufleuchtet. Mangelnde Batterieleistung kann unpräzise Messergebnisse hervorrufen. Stromschläge und körperliche Schäden können die Folge sein.
- * Sollten Sie das Gerät für einen längeren Zeitraum nicht benutzen, entnehmen Sie die Batterie aus dem Batteriefach.
- * Säubern Sie das Gehäuse regelmäßig mit einem feuchten Stofftuch und einem milden Reinigungsmittel. Benutzen Sie keine ätzenden Scheuermittel.
- * Dieses Gerät ist ausschließlich für Innenanwendungen geeignet.
- * Vermeiden Sie jegliche Nähe zu explosiven und entflammbaren Stoffen.
- * Öffnen des Gerätes und Wartungs- und Reparaturarbeiten dürfen nur von qualifizierten Service-Technikern durchgeführt werden.
- * Gerät nicht mit der Vorderseite auf die Werkbank oder Arbeitsfläche legen, um Beschädigung der Bedienelemente zu vermeiden.
- * Keine technischen Veränderungen am Gerät vornehmen.
- * -Messgeräte gehören nicht in Kinderhände-

Reinigung des Gerätes:

Gerät nur mit einem feuchten, fusselfreien Tuch reinigen. Nur handelsübliche Spülmittel verwenden. Beim Reinigen unbedingt darauf achten, dass keine Flüssigkeit in das Innere des Gerätes gelangt. Dies könnte zu einem Kurzschluss und zur Zerstörung des Gerätes führen.

1.1. Am Gerät befindliche Hinweise und Symbole

Die folgenden Symbole wurden auf das Gerät gedruckt, um auf die Messgrenzen und auf die Messsicherheit hinzuweisen:

10 A	abgesicherter Eingang für Strommessungen im A-Bereich bis max. 10 A AC/DC. Im 10 A- Bereich Messvorgang auf max. 30 Sek. begrenzen, nächste Messung erst nach 15 Minuten vornehmen. Der Eingang ist mit einer Sicherung 10A/600V abgesichert.	
mA	Eingang für Strommessungen bis max. 400 mA AC/DC. Der Eingang ist mit einer Sicherung (0,5 A/600 V) abgesichert.	
\triangle	Achtung! Entsprechende(n) Abschnitt(e) in der Bedienungsanleitung beachten. Nichtbeachtung birgt Verletzungsgefahr und/oder die Gefahr der Beschädigung des Gerätes.	
Max.	max. zulässige Spannungsdifferenz von 600 V zwischen COM-/ V-/ bzw. Ohm-Eingang und Erde aus Sicherheitsgründen nicht überschreiten.	
MAX 600V	max. zulässige Eingangswerte: 600 V DC/AC	
WARNING	Mögliche Gefahrenquelle. Sicherheitsvorschriften unbedingt beachten. Bei Nichtbeachtung besteht u. U. Verletzungs- oder Lebensgefahr und/oder die Gefahr der Beschädigung des Gerätes.	
*	Gefährlich hohe Spannung zwischen den Eingängen. Extreme Vorsicht bei der Messung. Eingänge und Messspitzen nicht berühren.	
	Doppelt isoliert (Schutzklasse II)	
CAT III	Überspannungskategorie III	

1.2. Maximal zulässige Eingangswerte

Messfunktion	Eingangsbuchsen	max. zulässige Eingangsspannung bzw strom
V DC	V/Ω/CAP/Hz/Temp.	600 V DC
V AC	und COM	600 V AC _{rms}
Ω •)))	una COM	250 V DC/AC _{rms}
μΑ/mA DC/AC	/A/μA/mA und COM	400 mA DC/AC _{rms}
10 A DC/AC	10 A und COM	10 A DC/AC _{rms}
Frequenz	V/O/CAD/U=/Town	250 V DC/AC _{ms}
Temperatur	V/Ω/CAP/Hz/Temp. und COM	250 V DC/AC _{rms}
Kapazität	una COM	250 V DC/AC _{rms}

2. Allgemeines

Das Multimeter ist universell einsetzbar, handlich mit robustem Gehäuse und ideal für den "Service-Alltag" von Technikern. Es liefert unter normalen Bedingungen exakte Messergebnisse über einen Zeitraum von vielen Jahren.

2.1. Eigenschaften des Gerätes

- Messwert-Haltefunktion DATA HOLD zum Einfrieren eines Messwertes in der Anzeige, um diesen später unter günstigeren Bedingungen ablesen zu können.
- * Automatische Polaritätsumschaltung
- * Überlast- und Überspannungsschutz
- * Hintergrundbeleuchtung
- Batteriezustandsanzeige leuchtet im Anzeigefeld bei unzureichender Batteriespannung
- * Summer ertönt zur Warnung bei Überlast, bei Durchgangsprüfungen und Bereichswahl
- * Abschaltautomatik
- Strommessungen bis 400 A mit einem Stromadapter (Stromadapter nicht im Lieferumfang enthalten).

2.2. Technische Daten

Anzeige	3 %-stelllige LCD-Anzeige mit automatischer Polaritätsumschaltung, max. Anzeige: 3999
Überbereichsanzeige	Anzeige von "OL"
Batteriezustandsanzeige	Batteriesymbol "BAT" leuchtet bei ungenügender Batteriespannung
Messfolge	2 x pro Sekunde, nominal
Abschaltautomatik	nach 15 Minuten
Betriebstemperaturbereich	050°C (32 122°F); <70% RH
Lagertemperaturbereich	-20+60° C (-4 +140°F); <80% RH
Temperaturbereich für angegebene Genauigkeit	1828° C; < 70% RH
Überstromsicherung A	10A / 600V AC/DC 10kA Breaking Capacity
Überstromsicherung mA	500mA / 600V AC/DC 1kA Breaking Capacity
Spannungsversorgung	9 V Blockbatterie (Neda 1604 oder gleichwertige Batterie)
Abmessungen (B x H x T)	92 x 195 x 38 mm
Gewicht	380 g
Mitgeliefertes Zubehör	Prüfleitungen, Bedienungsanleitung, Batterie, Typ K Thermokopplungselement, Temperaturadapter

3. Messfunktionen und - Bereiche

3.1. Gleichspannungsmessungen

Bereich	Auflösung	Genauigkeit
400 mV	100 μV	± 0,5% v.M. + 2 St.
4 V	1 mV	
40 V	10 mV	± 1,2% v.M. + 2 St.
400 V	100 mV	
600 V	1 V	± 1,5% v.M. + 2 St.

Eigenwiderstand: 10 MΩ

Überlastschutz: 600 V DC/ACeff

3.2. Wechselspannungsmessungen

Bereich	Auflösung	Genauigkeit
4 V	1 mV	± 1,2% v.M. + 3 St.
40 V	10 mV	± 1,5% v.M. + 3 St.
400 V	100 mV	± 1,5% V.IVI. + 3 St.
600 V	1 V	± 2% v.M. + 4 St.

AC True RMS Ansprechverhalten Eigenwiderstand: 10 MΩ

Frequenzbereich: 50 ... 400 Hz
Überlastschutz: 600 V DC/ACeff

Die Spezifikationen gelten für alle AC Spannungsbereiche von 5% bis

100% des Messbereiches.

AC Bandbreite: 50 ... 400 Hz (Sinus) & 50/60 Hz (alle)

3.3. Gleichstrommessungen

old: Glorolica chimicoccangon		
Bereich	Auflösung	Genauigkeit
400 μΑ	0,1 μΑ	± 1,0% v.M. + 3 St.
4 mA	1,0 μΑ	
40 mA	10,0 µA	± 1,5% v.M. + 3 St.
400 mA	100,0 μA	
4 A	1,0 mA	± 2,5% v.M. + 5 St.
10 A**	10,0 mA	± 2,5% V.IVI. + 5 St.

Überlastschutz:

500 mA/600 V Sicherung im mA-Eingang (Schmelzsicherung).

10 A/600 V Sicherung im 10 A-Eingang (Schmelzsicherung).

**10 A für max. 30 Sek.

3.4. Wechselstrommessungen

Bereich	Auflösung	Genauigkeit
400 μΑ	0,1 μΑ	± 1,5% v.M. + 5 St.
4 mA	1,0 μΑ	
40 mA	10,0 μΑ	± 1,8% v.M. + 5 St.
400 mA	100,0 μΑ	
4 A	1,0 mA	± 3,0% v.M. + 7 St.
10 A**	10,0 mA	± 3,0 /0 v.ivi. + / 3l.

Frequenzbereich: 50 ... 400 Hz

Überlastschutz:

500 mA/600 V Sicherung im mA-Eingang (Schmelzsicherung). 10 A/600 V Sicherung im 10 A-Eingang (Schmelzsicherung).

**10 A für max. 30 Sek.

3.5. DC-Strommessungen mit einem Stromadapter

Bereich	Auflösung	Genauigkeit
400 A	Ι () 1 Δ	± 1% v.M. + 3 St. + Stromadaptergenauigkeit

Überlastschutz: 250 V DC oder ACeff

3.6. AC-Strommessungen mit einem Stromadapter

Bereich	Auflösung	Genauigkeit
400 A	0,1 A	± 1,5% v. M. + 3 St.
400 A	0,1 A	+ Stromadaptergenauigkeit

AC True RMS Ansprechverhalten

Frequenzbereich: 50 Hz ... 400 Hz Überlastschutz: 250 V DC oder AC_{eff}

Die Spezifikationen gelten für alle AC Spannungsbereiche von 5% bis

100% des Messbereiches. AC Bandbreite

AC Bandbreite: 50 ... 400 Hz (Sinus) & 50/60 Hz (alle)

3.7. Widerstandsmessungen

on viaciotanacinoccangon		
Bereich	Auflösung	Genauigkeit
400 Ω	0,1 Ω	± 1,2% v.M. + 4 St.
4 kΩ	1,0 Ω	± 1,0% v.M. + 2 St.
40 kΩ	10,0 Ω	
400 kΩ	100,0 Ω	± 1,2% v.M. + 2 St.
4 ΜΩ	1,0 kΩ	
40 MΩ	10,0 kΩ	± 2,0% v.M. + 3 St.

Überlastschutz: 250 V DC/ACeff

3.8. Frequenzmessungen

Bereich	Auflösung	Genauigkeit
9.999 Hz	0,001 Hz	1 4 50/ v M 1 5 Ct
99.99 Hz	0,01 Hz	± 1,5% v.M. + 5 St.
999.9 Hz	0,1 Hz	
9.999 kHz	1,0 Hz	
99.99 kHz	10,0 Hz	± 1,5% v.M. + 4 St.
999.9 kHz	100,0 Hz	
9.999 MHz	1,0 kHz	

 $\begin{array}{ll} \mbox{Empfindlichkeit:} & 0.8 \ \mbox{V}_{\mbox{eff}} < 100 \ \mbox{kHz} \\ \mbox{Empfindlichkeit:} & > 5 \mbox{V}_{\mbox{eff}} > 100 \ \mbox{kHz} \\ \mbox{Überlastschutz:} & 250 \ \mbox{V} \ \mbox{DC/AC}_{\mbox{eff}} \end{array}$

3.9. Kapazitätsmessungen

Bereich	Auflösung	Genauigkeit
99.99 nF	0,01 nF	± 5% v.M. + 20 St.
999.9 nF	0,1 nF	
9.999 µF	0,001 μF	+ 4% v.M. + 5 St.
99.99 µF	0,01 µF	± 4% V.WI. + 5 St.
999.9 µF	0,1 µF	
9.999mF	0,001 mF	± 10% v.M.
99.99 mF	0,01 mF	

Überlastschutz: 250 V DC/ACeff

3.10. Temperaturmessungen

Bereich	Auflösung	Genauigkeit
-20+ 760°C	1°C	± 3% v. M. + 3°C
- 4+1400°F	1°F	± 3% v. M. + 5°F

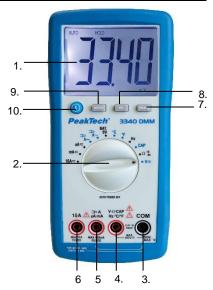
3.11. Diodentest

Bereich	Auflösung	Genauigkeit	Teststrom	Leerlauf- spannung
3 V	1 mV	± 10% v. M. + 5 St.	1 mA	3 V DC typisch

Überspannungsschutz: 250 V DC oder ACeff

3.12. Durchgangsprüfung

Bereich	Akkust. Signal	Reaktions-zeit	Prüfstrom
400 Ω	weniger als 50Ω	ca. 100 ms	< 1 mA


3.13. Batterietest

Bereich	Auflösung	Genauigkeit
9 V	10 mV	± 1% v. M. + 3 St.

Überlastschutz: 250 V DC oder ACeff

Prüfstrom: 6 mA

4. Bedienelemente und Anschlüsse am Gerät

- 1. 3 ¾-stellige LCD-Anzeige mit Hintergrundbeleuchtung
- 2. Funktionswahlschalter
- 3. COM-Eingangsbuchse
- 4. V/Ω/CAP/Hz/Temp.-Eingangsbuchse
- 5. μA, mA, A-Stromadapter-Eingangsbuchse
- 6. 10 A-Eingangsbuchse
- 7. Taste für DATA-HOLD und Hintergrundbeleuchtung
- 8. Taste für Relativwertmessungen
- 9. MODE-Taste
- 10. Ein/Aus-Taste

4.1. Beschreibung

1. LCD-Anzeige (mit Funktionssymbolen):

Die LCD-Anzeige dient der digitalen Messwertanzeige mit automatischer Polaritätswahl und Kommaplatzierung. Die maximale Anzeige beträgt 3999. Frequenz: 5000

2. Funktions-/Bereichswahlschalter

Zur Anwahl der gewünschten Messfunktion Funktions-/ Bereichswahlschalter in die entsprechende Stellung drehen.

3. COM - Eingang

Zum Anschluss der schwarzen Prüfleitung (alle Messfunktionen).

4. V/Ω/CAP/Hz/Temp.-Eingang

Zum Anschluss der roten Prüfleitung bei Spannungs-, Widerstands-, Kapazitäts- und Frequenzmessungen, sowie für die Messfunktionen Diodentest und Durchgangsprüfungen schalten.

5. µA, mA, A-Stromadapter-Eingang

Zum Anschluss der roten Prüffeitung bei AC/DC-Strommessungen im μ A/mA-Bereich (Funktions-/Bereichswahlschalter in Stellung " μ A" oder "mA", für Stromadapter in Stellung A schalten).

6. 10 A-Eingang

Zum Anschluss der roten Prüfleitung bei AC/DC-Strommessungen im A-Bereich bis max. 10 A (Funktions-/Bereichswahlschalter in Stellung "10 A" schalten).

7. Hold-Taste (Messwert-Haltefunktion) / Hintergrundbeleuchtung

Die Messwert-Haltefunktion ermöglicht das "Einfrieren" eines Messwertes in der digitalen Anzeige des Gerätes zur späteren Ablesung. Zur Umschaltung auf die Messfunktion, HOLD-Taste drücken. Der aktuelle Messwert wird in der LCD-Anzeige angezeigt. Zur Aufhebung der Messwert-Haltefunktion Taste erneut drücken.

Zum Einschalten bzw. Ausschalten der Hintergrundbeleuchtung HOLD-Taste 2 Sek. gedrückt halten.

8. REL-Δ-Funktion

Die Relativwert-Messfunktion gestattet die Messung und Anzeige von Signalen bezogen auf einen definierten Referenzwert. REL-Taste 1 x drücken. Der angezeigte Messwert wird auf 0 gesetzt. Bei einem Referenzwert von 100 V z. B. und einem tatsächlichen Messwert von 90 V, wird in der LCD-Anzeige -010,0 V angezeigt. Sind Referenzwert und Messwert identisch, zeigt die digitale Anzeige den Wert "0".

9. MODE-Taste

Zum Umschalten zwischen AC und DC im Spannungsbereich und in den Strombereichen bzw. zwischen Widerstands-messungen, Diodentest und Durchgangsprüfung.

10. Ein/Aus-Taste

Zum Ein- bzw. Ausschalten des Gerätes.

5. Vorbereitungen zur Inbetriebnahme

5.1. Anschluss der Prüfleitungen

Hinweis zur Benutzung der beiliegenden Sicherheitsprüf- leitungen entsprechend der Norm IEC / EN 61010-031:2015:

Messungen im Bereich der Überspannungskategorie CAT I oder CAT II können mit Prüfleitungen ohne Schutzkappen mit einer bis zu 18mm langen, berührbaren und metallischen Prüfspitze durchgeführt werden, während bei Messungen im Bereich der Überspannungskategorie CAT III oder CAT IV nur Prüfleitungen mit aufgesetzten Schutzkappen, bedruckt mit CAT III/CAT IV, einzusetzen sind und somit der berührbare und leitfähige Teil der Prüfspitzen nur noch max. 4mm lang ist.

Die dem Gerät beiliegenden Prüfleitungen sind für Messungen bis maximal 1200 V geeignet.

Das Messen von hohen Spannungen sollte nur mit äußerster Vorsicht und nur in Anwesenheit einer in Erster Hilfe ausgebildeten Person stattfinden.

Achtung!

Die maximal zulässige Eingangsspannung für dieses Gerät liegt bei 600 V DC/AC und darf aus Sicherheitsgründen nicht überschritten werden. Die maximal zulässige Spannungsdifferenz zwischen dem COM-Eingang und Erde beträgt 600 V DC/ACeff. Bei größeren Spannungsdifferenzen besteht Verletzungsgefahr durch elektrischen Schlag und/oder die Gefahr der Beschädigung des Messgerätes.

5.2. Schrägstellung des Gerätes

Das Gerät ist zur Schrägstellung auf einem Arbeitstisch mit einem Standbügel an der Rückseite versehen. Zum Schrägstellen, Standbügel am unteren Ende greifen und nach außen ziehen.

6. Messbetrieb

Phantomwerte

In niedrigen DC- und AC Spannungsbereichen und nicht angeschlossenen und somit offenen Eingängen zeigt die LCD-Anzeige sogenannte Phantomwerte, d. h. nicht "000" an. Dieses ist normal und stellt keinen Defekt des Gerätes dar. Dieser "wandernde" Effekt der Anzeige ist in der hohen Empfindlichkeit des Gerätes begründet. Ein Kurzschließen der Messkabel/Eingänge heben diesen Effekt auf und die Anzeige zeigt "000" bzw. bei Anschluss der Messleitungen wird der richtige Messwert angezeigt.

6.1. Gleich- und Wechselspannungsmessungen

Achtung!

Maximal zulässige Eingangsspannung von 600 V DC oder AC nicht überschreiten. Bei Überschreitung besteht die Gefahr schwerer Verletzungen durch Stromschlag und/oder die Gefahr der Beschädigung des Gerätes.

- Funktions-/Bereichswahlschalter in die für Gleich- oder Wechselspannungsmessung erforderliche Stellung drehen.
- 2. Rote Prüfleitung an den $V/\Omega/CAP/Hz/Temp.$ -Eingang, schwarze Prüfleitung an den COM-Eingang anschließen.
- Prüfleitungen über die zu messende Schaltung bzw. das zu messende Bauteil anlegen.
- Messwert in der LCD-Anzeige ablesen. Bei negativem Messwert erscheint links von der Messwertanzeige das Minussymbol (-).

Warnung!

Wenn die Prüfleitungen an eine Netzsteckdose angelegt werden, auf keinen Fall den Funktions-/Bereichswahlschalter auf einen anderen Messbereich einstellen. Dies könnte zur Zerstörung der internen Schaltung des Gerätes und schweren Verletzungen führen.

6.2. Gleich- und Wechselstrommessungen

Achtung!

Keine Strommessungen in Schaltungen mit einem Potential über 600 V vornehmen. Extreme Verletzungsgefahr und/oder die Gefahr der Beschädigung des Messgerätes.

Der 10-A-Eingang ist mit einer entsprechenden Sicherung abgesichert. Bei Anschluss einer Spannungsquelle an diesen Eingang besteht Verletzungsgefahr und die Gefahr der Zerstörung des Gerätes.

Zur Messung von Gleich- und Wechselströmen wie beschrieben verfahren:

- Erforderlichen Messbereich mit dem Funktions-/Bereichswahlschalter (2) wählen.
- Mit der AC/DC-Umschalttaste MODE (9) auf die gewünschte Messfunktion umschalten.

Für Messungen im μ A- oder mA-Bereich rote Prüfleitung an die Eingangsbuchse μ A/mA, schwarze Prüfleitung an den COM-Eingang anschließen.

Für Messung im 10 A-Bereich rote Prüfleitung an die 10 A-Eingangsbuchse, schwarze Prüfleitung an den COM-Eingang anschließen.

 Prüfleitungen in Reihe zur Messschaltung anschließen und Messwert in der LCD-Anzeige ablesen.

6.3. Für Strommessungen mit einem Stromadapter bis 400 A

- Rote Anschlussleitung des Stromzangenadapters in die Eingangsbuchse "µA, mA, Stromadapter A" und die schwarze Anschlussleitung des Stromadapters in die "COM"-Buchse einstecken.
- Zangenbacken des Adapters um den stromführenden Leiter (L1 oder N) legen.
- 3. Messwert in der LCD-Anzeige ablesen

Hinweise:

- Die Umrechnung bei Verwendung eines Stromzangenadapters erfolgt mit dem Faktor 1 A pro 1 mV. Daher wird empfohlen nur Stromzangenadapter mit dem gleichen Umrechnungsfaktor zu verwenden. Bei Verwendung eines Adapters mit anderem Faktor (z. B. 1 A/10 mV) muss das Ergebnis um diesen Faktor errechnet werden.
- * Legen Sie die Messzangen nie um die komplette Anschlussleitung, da sich das magnetische Feld zwischen Phase/Plus und Neutralleiter/Minus gegenseitig aufhebt und somit kein Messergebnis zustande kommen kann
- * Ein Minussymbol vor dem Messwert weist bei Gleichspannungen auf einen negativen Messwert hin. Das Minussymbol erlischt bei Anzeige von positiven Gleichspannungen oder bei Verpolung der Anschlussleitungen.

6.4. Widerstandsmessungen

Achtung!

- * Nach Umschaltung des Multimeters auf die Widerstandsmessfunktion, angeschlossene Prüfleitungen nicht über eine Spannungsquelle anlegen.
- * Widerstandsmessungen nur an spannungsfreien Schaltungen bzw. Bauteile vornehmen.

Zur Messung wie beschrieben verfahren:

- Funktions-/Bereichwahlschalter (2) in Stellung Ω/→→/•)))
 drehen.
- Mit der Mode-Taste (9) zwischen Ω/→/•))) Messfunktion wählen.
- Rote Prüfleitung an den V/Ω/CAP/Hz/Temp.-Eingang und schwarze Prüfleitung an den COM-Eingang anschließen.
- Prüfleitungen über den zu messenden Widerstand anlegen und Messwert in der LCD-Anzeige ablesen.
- Nach beendeter Messung Prüfleitungen von der Messschaltung und den Eingängen des Gerätes abziehen.

Hinweise:

- Der Eigenwiderstand der Prüfleitungen kann bei Messungen von kleinen Widerständen (400 Ω -Bereich) die Genauigkeit der Messung negativ beeinträchtigen. Der Eigenwiderstand üblicher Prüfleitungen lieat zwischen 0.2...1 Ο. 7ur genauen Bestimmuna des Eigenwiderstandes. Prüfleitungen an die Eingangsbuchsen des kurzschließen. Multimeters anschließen und Messspitzen Der angezeigte Messwert entspricht dem Eigenwiderstand der Prüfleitungen.
- * Bei Widerstandsmessungen stets auf guten Kontakt zwischen Messspitzen und Prüfwiderstand achten. Verunreinigungen an den Messspitzen oder den Anschlussdrähten des Widerstandes können zur Verfälschung des Messergebnisses führen.

- Bei Überschreitung des Messbereiches leuchtet in der LCD- Anzeige das Überlaufsymbol OL.
- * Beim Messen hoher Widerstandswerte (4 MΩ und höher) stabilisiert sich der angezeigte Messwert erst nach einigen Sekunden. Dies ist normal, und die Prüfleitungen sollten bis zu einer absolut stabilen Anzeige über dem gemessenen Widerstand angeschlossen bleiben.

6.5. Frequenzmessungen

ACHTUNG!

Keine Messungen an Schaltungen mit Spannungen über 250 V DC/AC_{eff} durchführen. Bei Überschreitung dieses Spannungswertes besteht die Gefahr schwerer Verletzungen durch Stromschlag und/oder die Gefahr der Beschädigung des Gerätes.

- 1. Funktions-/Bereichswahlschalter (2) in die zur Frequenz- messung erforderliche Stellung drehen.
- Rote Prüfleitung an den V/Ω/CAP/Hz/Temp.-Eingang, schwarze Prüfleitung an den COM-Eingang anschließen.
- Prüfleitungen über die zu messende Schaltung bzw. das zu messende Bauteil anschließen und Frequenz in der LCD- Anzeige ablesen. Für genaue Frequenzmessungen wird eine Messleitung mit BNC-Anschlüssen empfohlen.

Hinweise:

Eingangsempfindlichkeit bis 100 kHz: 0,8 Veff Eingangsempfindlichkeit über 100 kHz: 5 Veff

Überlastschutz bei Frequenzmessungen: 250 V DC oder ACeff

ACHTUNG!

Bei an die Steckdose angeschlossenen Prüfleitungen Stellung des Funktions-/Bereichswahlschalters nicht verändern; es besteht sonst Verletzungsgefahr und/oder die Gefahr der Beschädigung des Gerätes.

6.6. Kapazitätsmessungen

Achtung!

Kondensator vor der Messung unbedingt entladen. Dazu die Kondensatoranschlüsse kurzschließen. Dabei den Kontakt mit den blanken Anschlüssen unbedingt vermeiden (Verletzungsgefahr durch elektrischen Schlag!). Der Versuch, unter Spannung stehende Kondensatoren zu messen, kann zur Beschädigung des Multimeters führen.

Zur Messung der Kapazität eines Kondensators wie beschrieben verfahren:

- 1. Funktions-/Bereichswahlschalter (2) in Stellung CAP drehen.
- 2. Rote Prüfleitung an den V/ Ω /CAP/Hz/Temp. Eingang, schwarze Prüfleitung an den COM-Eingang anschließen.
- Bei polarisierten Kondensatoren unbedingt Polarität beachten! Prüfleitung über den zu messenden Kondensator anlegen.
- 4. Kapazitätswert in der LCD-Anzeige des Gerätes ablesen.

6.7. Temperaturmessungen

Die Anzeige der Temperatur erfolgt in °C oder °F.

Zur Messung wie beschrieben verfahren:

- Funktions-/Bereichswahlschalter (2) in Stellung °C oder °F drehen. Adapter für Thermokopplungsmesssonde in die V/Ω/CAP/ Hz/Temp.und COM-Eingangsbuchsen entsprechend der Polungsmarkierung auf dem Adapter einstecken.
- 2. Typ K-Thermokopplungsmesssonde an den Adapter an-schließen.
- Mit der Messsonde Temperatur des gewünschten Objektes messen und in der LCD-Anzeige (°C) bzw. (°F) ablesen.

6.8. Diodentest-Funktion

Diese Funktion ermöglicht die Überprüfung von Dioden und anderen Halbleitern auf Durchgängigkeit und Kurzschlüsse. Ebenfalls erlaubt diese Funktion die Durchlassspannung von Dioden zu ermitteln.

Zur Prüfung von Dioden wie beschrieben verfahren:

- 1. Funktions-/Bereichswahlschalter (2) in Stellung Ω drehen.
- Mit MODE-Taste (9) auf die Diodenprüffunktion des Gerätes umschalten.
- Prüfleitungen an die Buchsen COM und V/Ω/CAP/Hz/ Temp. anschließen.
- Prüfleitungen über die zu prüfende Diode anlegen und Messwert in der LCD-Anzeige ablesen.

6.9. Durchgangsprüffunktion

Zur Messung der Durchgängigkeit von Bauteilen wie beschrieben verfahren:

- 1. Funktions-/Bereichswahlschalter (2) in Stellung Ω drehen.
- Mit der MODE-Taste (9) auf die Durchgangsprüffunktion des Gerätes umschalten.
- Zu prüfendes Bauteil bzw. zu prüfende Schaltung spannungslos schalten.
- Prüfleitungen über das zu messende Bauteil bzw. die zu messende Schaltung anlegen. Bei Widerständen unter 50Ω (Bauteil durchgängig) ertönt ein akustisches Signal.

ACHTUNG!

Unter keinen Umständen Durchgangsprüfungen an spannungs-führenden Bauteilen oder Schaltungen vornehmen.

6.10. Batterie-Testfunktion

- Rote Prüfleitung an den V/Ohm-Eingang und schwarze Prüfleitung an den COM-Eingang des Gerätes anschließen. (Die Polarität der roten Prüfleitung ist "+").
- 2. Funktionswahlschalter in Stellung "BAT. 9V" drehen.
- Rote Prüfleitung an die positive Seite der 9V-Batterie anschließen und schwarze Prüfleitung an die negative Seite.
- 4. Messwert in der LCD-Anzeige ablesen

	Gut	Schwach	Schlecht
9V-Batterie	>8,2V	7,2 bis 8,2V	<7,2V

7. Wartung des Gerätes

7.1. Auswechseln der Batterie

Bei ungenügender Batteriespannung leuchtet das Batteriesymbol auf. Die Batterie ist dann baldmöglichst auszuwechseln.

Achtung!

Vor Abnahme des Batteriefachdeckels unbedingt alle Prüfleitungen von den Eingängen des Multimeters abziehen und Gerät ausschalten.

Zum Einsetzen der Batterie wie beschrieben verfahren:

- Gerät ausschalten und alle Prüfleitungen von der Mess-schaltung, bzw. den Eingängen des Multimeters abziehen.
- 2 Schrauben im Batteriefachdeckel mit einem geeigneten Schraubendreher lösen und Batteriefachdeckel abnehmen.
- Verbrauchte Batterie aus dem Batteriefach entfernen.
- Neue Batterie in das Batteriefach einlegen.
- Batteriefachdeckel wieder aufsetzen und mit den 2 Schrauben befestigen.

ACHTUNG!

Verbrauchte Batterien ordnungsgemäß entsorgen. Verbrauchte Batterien sind Sondermüll und müssen in die dafür vorgesehenen Sammelbehälter gegeben werden. Gesetzlich vorgeschriebene Hinweise zur Batterieverordnung

ACHTUNG!

Gerät nicht mit offenem Batteriefach benutzen!

Hinweis:

Niemals eine defekte oder verbrauchte Batterie im Messgerät belassen. Auch auslaufsichere Batterien können Beschädigungen durch auslaufende Batteriechemikalien verursachen. Ebenso sollte bei längerem Nichtgebrauch des Gerätes die Batterie aus dem Batteriefach entfernt werden.

7.2. Hinweise zum Batteriegesetz

Im Lieferumfang vieler Geräte befinden sich Batterien, die. z. B. zum Betrieb von Fernbedienungen dienen. Auch in den Geräten selbst können Batterien oder Akkus fest eingebaut sein. Im Zusammenhang mit dem Vertrieb dieser Batterien oder Akkus sind wir als Importeur gemäß Batteriegesetz verpflichtet, unsere Kunden auf folgendes hinzuweisen:

Bitte entsorgen Sie Altbatterien, wie vom Gesetzgeber vorgeschrieben - die Entsorgung im Hausmüll ist laut Batteriegesetz ausdrücklich verboten-, an einer kommunalen Sammelstelle oder geben Sie sie im Handel vor Ort kostenlos ab. Von uns erhaltene Batterien können Sie nach Gebrauch bei uns unter der auf der letzten Seite angegeben Adresse unentgeltlich zurückgeben oder ausreichend frankiert per Post an uns zurücksenden.

Schadstoffhaltige Batterien sind mit einem Zeichen, bestehend aus einer durchgestrichenen Mülltonne und dem chemischen Symbol (Cd, Hg oder Pb) des für die Einstufung als schadstoffhaltig ausschlaggebenden Schwermetalls versehen:

- 1. "Cd" steht für Cadmium.
- 2. "Hg" steht für Quecksilber.
- 3. "Pb" steht für Blei.

7.3. Auswechseln der Sicherung

Achtung!

Vor Abnahme der Rückwand zum Auswechseln der Sicherung Multimeter ausschalten und alle Prüfleitungen von den Eingängen abziehen.

Defekte Sicherung nur mit einer dem Originalwert und Originalabmessungen entsprechenden Sicherung ersetzen.

F2 500 mA / 600 V F; 6,3x32mm (min. 300 A Abschaltvermögen) F1 10 A / 600 V F; 6,3x32mm (min. 10 kA Abschaltvermögen)

Die Abnahme der Rückwand und das Auswechseln der Sicherung darf nur durch qualifiziertes Fachpersonal erfolgen.

Zum Auswechseln der Sicherung wie beschrieben verfahren:

- Multimeter ausschalten und alle Pr
 üfleitungen von den Ein g
 ängen abziehen
- 2. Die 5 Schrauben im Gehäuseunterteil lösen und Unterteil abziehen.
- Defekte Sicherung entfernen und neue Sicherung gleichen Anschlusswertes und Abmessungen in den Sicherungshalter einsetzen. Beim Einsetzen darauf achten, dass die Sicherung mittig im Sicherungshalter zu liegen kommt.
- 4. Unterteil wieder auflegen und mit den 5 Schrauben befestigen.

Keine Messungen bei abgenommenen Gehäuse vornehmen!

7.4. Wartung des Gerätes

Das Multimeter ist ein Präzisionsmessgerät und entsprechend vorsichtig zu behandeln. Eine Modifizierung oder Veränderung der internen Schaltkreise ist nicht gestattet.

Wartungs- und Reparaturarbeiten am Gerät dürfen nur von qualifizierten Fachkräften vorgenommen werden.

Für eine lange Lebensdauer empfiehlt sich ein sorgfältiger Umgang mit dem Messgerät und die Durchführung bzw. Beachtung folgender Maßnahmen und Punkte:

- Gerät trocken halten. Wird es dennoch einmal feucht oder nass, sofort trocken reiben.
- Gerät keinen extremen Temperaturen aussetzen und nur in normal temperierten Räumen lagern.
- * Genaue Messergebnisse sind nur bei sorgfältiger Behandlung und Pflege des Gerätes gewährleistet.
- Gerät nicht in staubiger oder schmutziger Umgebung betreiben oder lagern.
- Verbrauchte Batterie baldmöglichst aus dem Gerät entfernen und durch eine neue Batterie ersetzen (siehe Abschnitt "Aus-wechseln der Batterie"). Auslaufende Batterien können zur Zerstörung der elektronischen Schaltkreise führen.
- * Gehäuse nur mit einem weichen, feuchten Tuch reinigen. Als Reinigungsmittel nur herkömmliche Spülmittel verwenden. Unter keinen Umständen scheuerstoffhaltige Mittel verwenden.

Achtung!

Modifizierung der internen Schaltkreise oder Änderungen am Aussehen oder der Bestückung des Multimeters, haben den automatischen Verlust der Herstellergarantie zu Folge.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung dieser Anleitung oder Teilen daraus, vor-behalten.

Reproduktionen jeder Art (Fotokopie, Mikrofilm oder ein anderes Verfahren) nur mit schriftlicher Genehmigung des Herausgebers gestattet.

Letzter Stand bei Drucklegung. Technische Änderungen des Gerätes, welche dem Fortschritt dienen, vorbehalten.

Hiermit bestätigen wir, dass alle Geräte, die in unseren Unterlagen genannten Spezifikationen erfüllen und werkseitig kalibriert geliefert werden. Eine Wiederholung der Kalibrierung nach Ablauf von 1 Jahr wird empfohlen.

© PeakTech®

1. Safety Information

This product complies with the requirements of the following directives of the European Union for CE conformity: 2014/30/EU (electromagnetic compatibility), 2014/35/EU (low voltage), 2011/65/EU (RoHS).

Overvoltage category III 600V; pollution degree 2.

CAT I: For signal level, telecommunication, electronic with small transient over voltage

CAT II: For local level, appliances, main wall outlets, portable equipment

CAT III: Distribution level, fixed installation, with smaller transient

overvoltages than CAT IV.

CAT IV: Units and installations, which are supplied overhead lines, which are stand in a risk of persuade of a lightning, i.e. main-switches

on current input, overvoltage-diverter, current use counter.

To ensure safe operation of the equipment and eliminate the danger of serious injury due to short-circuits (arcing), the following safety precautions must be observed.

Damages resulting from failure to observe these safety precautions are exempt from any legal claims whatever.

- * **WARNING!** Do not use this instrument for high-energy industrial installation measurement.
- * Do not exceed the maximum permissible input ratings (danger of serious injury and/or destruction of the equipment).
- * The meter is designed to withstand the stated max voltages. If it is not possible to exclude without that impulses, transients, disturbance or for other reasons, these voltages are exceeded a suitable prescale (10:1) must be used.
- * Do not operate the meter before the cabinet has been closed and screwed safely as terminal can carry voltage.
- Replace a defective fuse only with a fuse of the original rating. Never short-circuit fuse or fuse holding.
- * Disconnect test leads or probe from the measuring circuit before switching modes or functions.

- * Do not conduct voltage measurements with the test leads connected to the mA/A- and COM-terminal of the equipment.
- * The 10A-range is protected. To avoid damage or injury, use the meter only in circuits limited by fuse or circuit breaker to 10A or 2000VA.
- * To avoid electric shock, disconnect power to the unit under test and discharge all capacitors before taking any resistance measurements.
- * Do not conduct current measurements with the leads connected to the V/Ω -terminals of the equipment.
- * Check test leads and probes for faulty insulation or bare wires before connection to the equipment.
- * To avoid electric shock, do not operate this product in wet or damp conditions. Conduct measuring works only in dry clothing and rubber shoes, i. e. on isolating mats.
- * Never touch the tips of the test leads or probe.
- * Comply with the warning labels and other info on the equipment.
- Always start with the highest measuring range when measuring unknown values.
- Do not subject the equipment to direct sunlight or extreme temperatures, humidity or dampness.
- * Do not subject the equipment to shocks or strong vibrations.
- * Do not operate the equipment near strong magnetic fields (motors, transformers etc.).
- * Keep hot soldering irons or guns away from the equipment.
- * Allow the equipment to stabilize at room temperature before taking up measurement (important for exact measurements).
- * Do not input values over the maximum range of each measurement to avoid damages of the meter.
- * Do not turn the rotary function switch during voltage or current measurement, otherwise the meter could be damaged.
- Use caution when working with voltages above 35V DC or 25V AC. These Voltages pose shock hazard.
- * Replace the battery as soon as the battery indicator "BAT" appears. With a low battery, the meter might produce false reading that can lead to electric shock and personal injury.
- * Fetch out the battery when the meter will not be used for long period.
- * Periodically wipe the cabinet with a damp cloth and mid detergent. Do not use abrasives or solvents.
- * The meter is suitable for indoor use only
- * Do not store the meter in a place of explosive, inflammable substances.

- * Opening the equipment and service and repair work must only be performed by qualified service personnel

 * Do not modify the equipment in any way
- * Measuring instruments don't belong to children hands.

Cleaning the cabinet

Clean only with a damp, soft cloth and a commercially available mild household cleanser. Ensure that no water gets inside the equipment to prevent possible shorts and damage to the equipment.

1.1. Safety Symbols
The following symbols have been replaced on the meter to remind you of measurement limitations and safety:

10 A	The maximum current that you can measure at this terminal is 10 A DC/AC. This terminal is fuse protected by F 10A/600 V fuse. When using this range with high current, keep the duty cycle to 30 sec. on load and 15 minutes off load.	
mA	The maximum current that you can measure with this terminal is 400 mA that is fuse protected by 500 mA/600 V fuse.	
\triangle	Refer to the complete operating instructions.	
Max.	To avoid electrical shock or instrument damage, do not connect the common Input COM Terminal to any source of 600 V DC/AC with respect to earth ground.	
MAX 600V	The maximum voltage this meter can measure is 600 V DC/AC	
WARNING	This WARNING symbol indicates potentially hazardous situation, which if not avoided, could result in death or serious injury.	
*	Be exceptionally careful when measuring high voltages. Do not touch the terminals or test leads ends	
	Indicates protection class II (Double Insulation)	
CAT III	Overvoltage category III	

1.2. Input Limits

Function	Terminal	Input Limits
V DC	V/Ω/CAP/Hz/Temp.	600 V DC
V AC	und COM	600 V AC _{ms}
Ω •)))	una com	250 V DC/AC _{rms}
μA/mA DC/AC	/A/μA/mA und COM	400 mA DC/AC _{rms}
10 A DC/AC	10 A und COM	10 A DC/AC _{rms}
Frequenz	V/Ω/CAP/Hz/Temp.	250 V DC/AC _{ms}
Temperatur	und COM	250 V DC/AC _{ms}
Kapazität	una CON	250 V DC/AC _{ms}

2. Introduction

With this Digital Multimeter, you have acquired a high-quality, powerful performance, heavy-duty rugged and handheld multimeter that will give you confidence and peace of mind in your every measuring job.

Please read these operating instruction very carefully, before commencing your measurements.

2.1. Specifications

- * DATA-HOLD
- * Automatic polarity, negative polarity indication
- * Overload protection
- * Backlight
- Low battery indication
- * Buzzer
- * Auto power off
- Current test with a clamp-on-adaptor up to 400 A (Clamp-on-adaptor not included).

2.2. Technical Data

Display	LCD display with 3999 counts (3 ¾ digit) and automatic polarity indication
Overrange indication	"OL"
Low battery indication	"BAT" appears, if battery is low
Reading time	2 reading per second
Auto Power off	after 15 min.
Operating Temperature	0° C50° C < 70% R.H.
Storage Temperature	-20° C+60° C < 80% R.H.
Temperature for guaran- teed accuracy	1828° C; < 70% RH
Battery Type	9V battery (NEDA 1604)
Fuse A	10A / 600V AC/DC 10kA Breaking Capacity
Fuse mA	500mA / 600V AC/DC 1kA Breaking Capacity
Dimensions (B x H x T)	92 x 195 x 38 mm
Weight	380 g
Accessories supplied	Operating manual, test leads, Battery, K-type thermocouple, Adaptor for thermocouple

3. Functions and ranges

3.1. DC Volts

Range	Resolution	Accuracy
400 mV	100 μV	± 0,5% rgd. + 2 dgt.
4 V	1 mV	
40 V	10 mV	± 1,2% rgd. + 2 dgt.
400 V	100 mV	
600 V	1 V	± 1.5% rad. + 2 dat.

Input Impedance: 10 MΩ

Overload Protection: 600 V DC/AC_{rms}

3.2. AC Volts

Range	Resolution	Accuracy
4 V	1 mV	± 1,2% rgd. + 3 dgt.
40 V	10 mV	1 50/ rad 1 2 dat
400 V	100 mV	± 1,5% rgd. + 3 dgt.
600 V	1 V	± 2,0% rgd. + 4 dgt.

AC Response True RMS

 $\begin{array}{ll} \mbox{Input Impedance:} & 10 \mbox{ M}\Omega \\ \mbox{Frequency range:} & 50 \hdots 400 \mbox{ Hz;} \\ \mbox{Overload protection:} & 600 \mbox{ V DC } / \mbox{ AC}_{\mbox{\scriptsize rms}} \end{array}$

All AC voltage ranges are specified from 5% of range to 100% of range AC Voltage Bandwidth: 50 ... 400 Hz (Sine) & 50/60 Hz (all wave)

3.3. DC Current

Range	Resolution	Accuracy
400 μΑ	0,1 μΑ	± 1,0% rgd. + 3 dgt.
4 mA	1,0 μΑ	
40 mA	10,0 μA	± 1,5% rgd. + 3 dgt.
400 mA	100,0 μΑ	
4 A	1,0 mA	1 2 E9/ rad 1 E dat
10 A**	10,0 mA	± 2,5% rgd. + 5 dgt.

Overload protection:

500 mA/600 V fuse on mA-inputs (Fast blow fuse F).

10 A/600 V fuse on 10 A-inputs (Fast blow fuse F).

^{**10} A for max. 30 sec.

3.4. AC Current

Range	Resolution	Accuracy
400 μΑ	0,1 μΑ	± 1,5% rgd. + 5 dgt.
4 mA	1,0 μΑ	
40 mA	10,0 μΑ	± 1,8% rgd. + 5 dgt.
400 mA	100,0 μΑ	
4 A	1,0 mA	± 3,0% rgd. + 7 dgt.
10 A**	10,0 mA	± 3,0 % rgu. + 7 dgl.

Frequency range: 50 ... 400 Hz

Overload protection:

500 mA/600 V fuse on mA-inputs (Fast blow fuse).

10 A/600 V fuse on 10 A-inputs (Fast blow fuse).

3.5. DC-Current with current adaptor

Range	Resolution	Accuracy
400 A	0,1 A	± 1% rgd. + 3 dgt. + adaptor-accuracy

Overload protection: 250 V DC or AC_{rms}

3.6. AC-Current with current adaptor

Range	Resolution	Accuracy
400 A	IUIA	± 1,5% rgd. + 3 dgt. + adaptor-accuracy

AC Response True RMS

Frequency range: 50 Hz ... 400 Hz Overload protection: 250 V DC or AC_{ms}

All AC current ranges are specified from 5% of range to 100% of range AC current Bandwidth: 50 ... 400 Hz (Sine) & 50/60 Hz (all wave)

^{**10} A for max. 30 sec.

3.7. Resistance

Range	Resolution	Accuracy
400 Ω	0,1 Ω	± 1,2% rgd. + 4 dgt.
4 kΩ	1,0 Ω	± 1,0% rgd. + 2 dgt.
40 kΩ	10,0 Ω	
400 kΩ	100,0 Ω	± 1,2% rgd. + 2 dgt.
4 ΜΩ	1,0 kΩ	
40 MΩ	10,0 kΩ	± 2,0% rgd. + 3 dgt.

Overload protection: 250 V DC/AC_{rms}

3.8. Frequency

Resolution	Accuracy
0,001 Hz	+ 1 59/ rad + 5 dat
0,01 Hz	± 1,5% rgd. + 5 dgt.
0,1 Hz	
1,0 Hz	
10,0 Hz	± 1,5% rgd. + 4 dgt.
100,0 Hz	
1,0 kHz	
	0,001 Hz 0,01 Hz 0,1 Hz 1,0 Hz 10,0 Hz 100,0 Hz

 $\begin{array}{lll} \mbox{Sensitivity:} & 0.8 \ \mbox{V}_{ms} < 100 \ \mbox{kHz} \\ \mbox{Sensitivity:} & > 5 \ \mbox{V}_{ms} > 100 \ \mbox{kHz} \\ \mbox{Overload protection:} & 250 \ \mbox{V DC/AC}_{ms} \\ \end{array}$

3.9. Capacitance

Range	Resolution	Accuracy
99.99 nF	0,01 nF	± 5% rgd. + 20 dgt.
999.9 nF	0,1 nF	
9.999 µF	0,001 μF	± 4% rgd. + 5 dgt.
99.99 μF	0,01 μF	
999.9 μF	0,1 µF	
9.999 mF	0,001 mF	± 10% rgd.
99.99 mF	0,01 mF	-

Overload protection: 250 V DC/AC_{rms}

3.10. Temperature

Range	Resolution	Accuracy
-20+ 760°C	1°C	± 3% rgd. + 3°C
- 4+1400°F	1°F	± 3% rgd. + 5°F

3.11. Diode test

Range	Resolution	Accuracy	Test current	Open circuit volts
3 V	1 mV	± 10% rgd. + 5 dgt.	1 mA	3 V DC typical

Overload protection: 250 V DC or AC_{rns}

3.12. Continuity Test

Range	Audible Threshold	Response Time	Test current
400 Ω	less than 50Ω	approx. 100 ms	< 1 mA

3.13. Battery test

Range	Resolution	Accuracy
9 V	10 mV	± 1% rgd. + 3 dgt.

Test current: 6 mA

Overload protection: 250 V DC or AC_{ms}

4. Front Panel Description

- 1. 3 ¾-digit LCD-display with backlight
- Rotary selector
- COM-input jack
- 4. V/Ω/CAP/Hz/Temp.-input jack
- 5. μA, mA and A-clamp adaptor input jack
- 6. 10 A-input jack
- 7. Pushbutton for DATA-HOLD and backlight
- 8. Pushbutton for relative mode
- 9. Pushbutton MODE
- Power pushbutton

4.1. Description

1. LCD-Display

3 % digit (3999 maximum) with automatic decimal point, low battery and full annunciator for function and unit of measurement. Frequency range: 5000 counts.

2. Function/Range Selector Rotary Switch

This rotary switch selects function and range needed. Each time the rotary switch is moved from OFF to a function setting, all LCD segments will turn on for one second.

3. COM-Terminal

This is the negative (ground) input terminal for all measurement modes. Connection is made to it using the black test lead.

4. V/Ω/CAP/Hz/Temp.-Input Terminal

This is the positive input terminal for all functions except current /capacitance measurements. Connection is made to it using the red test lead.

5. µA/mA/ A clamp-on adapter-Input Terminal

This is the positive input terminal for current measurement (AC or DC) in $\mu\text{A/mA-}range$ up to 400 mA. Connection is made to it using the red test lead. Move Rotary Selector Switch to $\mu\text{A/mA/A}$ clamp-on adapter - position.

6. 10 A-Input Terminal

This is the positive input terminal for current measurement (AC or DC) up to 10 A. Connection is made to it using the red test lead.

7. HOLD-Button

Press HOLD-button to toggle in and out of the DATA-Hold mode. In the DATA-Hold mode, the "HOLD" annunciator is displayed and the last reading is frozen on the display. Press the HOLD-button again to exit and resume readings.

To switch on or off the backlight, press HOLD-button for 2 sec.

8. REL-∆-button

When the REL- Δ button is pressed the present reading becomes the zero reading and all subsequent readings are displayed relative to this value. This function is cleared by pressing the REL- Δ button > 1 sec. which returns the meter to normal operation.

9. MODE-button

For switching from AC/DC voltage ranges to current ranges and from resistance, diode test and continuity test.

10. ON/OFF button

For switching the instrument on and off.

5. Steps before using

5.1. Connection of test leads

CAUTION!

Note on using the supplied safety test leads according the IEC / EN 61010-031:2015:

Measurements in the field of overvoltage category CAT I or CAT II can be performed with test leads without sleeves with a maximum of up to 18mm long, touchable metallic probe, whereas for measurements in the field of overvoltage category CAT III or CAT IV test leads with put on sleeves, printed with CAT III and CAT IV must be used, and therefore the touchable and conductive part of the probes have only max. 4mm of length.

The supplied test leads can be used for measurements up to 1200 V. High-voltage measurements should be done with care and in presence of a person, who is educated in first-aid.

Caution!

The max. input voltage for this instrument is 600 V DC/AC and to be on the safe side, these values mustn't be passed. The max. voltage-difference between COM-input and earth is 600 V DC/AC $_{\rm eff}$. Higher voltage-differences may cause personal injury or damage of the unit.

5.2. Angle position of the unit

This multimeter is provided with a stand at it's backside for having and angle-position.

6. How to make measurements

Understanding Phantom readings

In some DC and AC voltage ranges, when the test leads are not connected to any circuit, the display might show a phantom reading. This is normal. The meter's high input sensitivity produces a wandering effect. When you connect the test leads to a circuit, accurate reading appears.

Before making any measurements always examine the instrument and accessories used with the instrument for damage, contamination (excessive dirt, grease, etc.) and defects. Examine the test leads for cracked or frayed insulation and make sure the lead plugs fit snugly into the instrument jacks. In any abnormal conditions exist do not attempt to make any measurements.

6.1. Voltage measurements

Warning!

To avoid possible electric shock, instrument damage and/or equipment damage, do not attempt to take any voltage measurements if the voltage is above 600 V DC/AC. 600 V DC/AC are the maximum voltages, that this instrument is designed to measure. The "COM" terminal potential should not exceed 600 V measured to ground

- 1. Insert the black and red test leads into the COM and V/ Ω / CAP/Hz/Temp.- input terminals respectively.
- Select the desired AC voltage range (V ~), or DC voltage range (V ——).
- Connect the test lead tips in parallel with the circuit to be measured (e.g. across a load or power supply). Be careful not to touch any energized conductors. Note the reading.
- 4. When all measurements are complete, disconnect the test leads from the circuit under test. Remove the leads from the multimeter. For DC voltage readings, the RED lead tip should be connected to the positive side of the circuit, the BLACK lead to the negative side. A minus sign on the left hand of the LCD will appear if the leads are connected the other way round.

6.2. Current measurements

Warning!

Do not attempt to measure currents in high energy circuits capable of delivering greater than 600 V. Since the fuse is rated at 600 V damage or injury could occur. The 10 A input terminal is protected by a 10 A/600 V high energy, fast blow fuse.

All current ranges are fused. If a current greater than 10 A on the 10 A range or greater than 500 mA on all other ranges flow, the fuse will blow causing an open circuit between the current measuring terminal.

- Insert the BLACK test lead in the COM input terminal.
- For measuring currents less than 400 mA, connect the red test lead to the µA/mA input terminal. For measuring currents between 400 mA and 10 A connect RED test lead to the 10 A terminal.
- Select the desired current range and select AC/DC by pressing MODEbutton.

Note:

If the 20 A range is selected then the 20 A input terminal must be selected in step 2. If the μA , mA ranges is selected the mA input terminal must be selected in step 2.

- Switch OFF or disconnect the circuit to be measured from all power sources, connect the multimeter in series with the conductor in which the current to be measured flows.
- Switch ON the circuit. Note the reading.
- Switch OFF or disconnect the circuit and remove the test leads from multimeter.

6.3. Current measurement with a clamp-on-adapter

- Connect the black test lead of the clamp-on-adapter with the COM terminal and the red test lead of the clamp-on- adapter with the µA,mA terminal.
- 2. Embrace the positive/phase cable with the measurement clamps
- 3. Read the measurement value from the display

Note:

- * The conversion when using a current clamp adapter is a factor 1A per 1mV. Therefore we recommend to use only current clamps with the same conversion factor. When using an adapter with a different factor (1A/10mV) this factor must be calculated to the measurement value manually by the user.
- * Never attach the clamps to the complete cable, because the magnetic field between phase / neutral and plus / minus cancels each other and therefore no measurement result will be displayed.
- * A minus-symbol in front of the reading shows a negative DC-Voltage. The minus-symbol disappears when measuring a positive voltage

6.4. Resistance measurements

Caution!

Turn off power on the test circuit and discharge all capacitors before attempting in-circuit resistance measurements. If an external voltage is present across a component, it will be impossible to take an accurate measurement of the resistance of that component.

- Insert the BLACK and RED test leads into the COM and V/Ω/CAP/Hz/Temp.-input terminals respectively.
- 2. Set the rotary selector switch to the (Ω) position.
- Connect the BLACK and RED test probe tips to the circuit or device under test, making sure it is de-energized first.
- 4. The resistance in the test leads can diminish accuracy on the lowest (400 Ω) range. The error is usually 0.1 to 0.2 Ω for a standard pair of test leads.
- To determine the error, short the test leads together and then use the (REL) Relative mode to automatically subtract the lead resistance from resistance measurements.

6.5. Frequency measurements

- Set the Function/Range switch to Hz for frequency measurement.
- Connect the red test lead to the V/Ω/CAP/Hz/Temp. input jack and the black test lead to the COM-jack.
- Connect test leads to the point of measurement and read the frequency from the display.

Hinweise:

Sensitivity up to 100 kHz: 0,8Vrms Sensitivity over 100 kHz: 5 Vrms

Overload protection: 250 V DC oder ACrms

6.6. Capacitance measurements

Caution!

Turn off power and discharge the capacitor before attempting a capacitance measurement. Use the DCV function to confirm that the capacitor is discharged.

- 1. Set the Function/Range switch to CAP (capacitance).
- Connect the test leads to the capacitor. Observe polarity when measuring polarized capacitors.
- Read the capacitance directly from the display. A shorted capacitor will indicate an overrange. An open capacitor will indicate near zero on all ranges.
- For maximum accuracy, step to the desired range in manual ranging, then press the REL Δ button to zero out test lead capacitance before the measurement.

6.7. Temperature measurements

- Select the required temperature range and unit of measurement (°C of °F) by turning the rotary selector switch dial to °C or °F position.
 Connect the thermocouple adaptor to the V/Ω/CAP/Hz/Temp.- and COM input terminal.
- 2. Connect a type K thermocouple to the thermocouple input terminal on the thermocouple adaptor.
- 3. Place the thermocouple junction tip at the point where the temperature is to be measured.

Note:

For very high temperatures the multimeter must be kept far enough away from the source of temperature to avoid heat damage. At high temperatures, the life of the temperature probe will be reduced.

6.8. Diode testing

Caution!

Measurements must only be made with the circuit power OFF.

- 1. Insert the black and red test lead into the COM and $V/\Omega/CAP/Hz/Temp.$ -input terminal respectively.
- 2. Set the Rotary Selector Switch to the Ω position.
- 3. Select the function by pressing the Mode-button.
- 4. Follow steps 1 and 3 as for resistance measurements.
- The red lead should be connected to the anode and the black lead to the cathode. For a silicon diode, the typical forward voltage should be about 0.6 V.

6.9. Continuity testing

- 1. Insert the black and red test lead into the COM and V/ Ω /CAP/Hz/Temp.input terminal respectively.
- 2. Set the Rotary Selector Switch to the Ω -position.
- 3. Select the *))) function by pressing the MODE-button.
- 4. Follow steps 1 and 3 as for resistance measurements. An audible tone will sound for resistance less than approx. 50Ω . After all measurements are completed, disconnect the test leads from the circuit and from the multimeter inputterminals.

6.10. Battery Test

- 1. Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive V jack.
- 2. Select the BAT 9V position using the function select switch.
- Connect the red test lead to the positive side of the 9V battery and the black test lead to the negative side of the 9V battery.
- 4. Read the voltage in the display.

	Good	Weak	Bad
9V battery	>8,2V	7,2 to 8,2V	<7,2V

7. Care and Maintenance

7.1. Installing the battery

Your meter requires a 9 V battery for power. The battery symbol appears when the battery voltage drops to certain limits. For correct operation, replace the battery as soon as possible. Continued use with a low battery will lead to errors in readings.

WARNING!

To avoid electric shock, disconnect all leads from any equipment before you remove or install the battery.

Follow these steps to install the battery.

- 1. Turn off the power and disconnect all test leads.
- 2. Remove the 2 screws to open the battery compartment.
- 3. Remove the battery.
- Place the battery into the insulation capsule.
- 5. Replace the battery cover and secure it with the screws.

WARNING!

Do not discard the provided battery insulation capsule. If you do not use this insulation capsule properly, it might cause damage or injury.

WARNING!

Do not operate the meter until you replace the battery and close the battery compartment cover.

7.2. Notification about the Battery Regulation

The delivery of many devices includes batteries, which for example serve to operate the remote control. There also could be batteries or accumulators built into the device itself. In connection with the sale of these batteries or accumulators, we are obliged under the Battery Regulations to notify our customers of the following:

Please dispose of old batteries at a council collection point or return them to a local shop at no cost. The disposal in domestic refuse is strictly forbidden according to the Battery Regulations. You can return used batteries obtained from us at no charge at the address on the last side in this manual or by posting with sufficient stamps.

Contaminated batteries shall be marked with a symbol consisting of a crossed-out refuse bin and the chemical symbol (Cd, Hg or Pb) of the heavy metal which is responsible for the classification as pollutant:

- 1. "Cd" means cadmium.
- 2. "Hg" means mercury.
- 3. "Pb" stands for lead.

7.3. Replacing the fuse

WARNING!

To avoid electric shock, disconnect all the test probes before removing the fuse. Replace only with the same type of fuse. Not note remove the top cover. Service should be performed only by qualified personnel.

CAUTION!

For continued protection against fire or other hazard, replace only with fuse of the specified voltage and current ratings.

F2 500 mA / 600 V F; 6,3x32mm (min. 300 A breaking Capacity) F1 10 A / 600 V F; 6,3x32mm (min. 10 kA breaking Capacity)

Follow these steps to replace the fuse:

- Press ON/OFF button to turn the meter off and disconnect the test probes.
- Remove the back cover by unscrewing the five screws and pulling off the meter's cover.
- Remove the blown fuse.
- Install the new fuse in the fuse compartment.
- 5. Replace the cover and secure it with the screws.

WARNING!

Do not operate your meter until the back cover is in place and fully closed.

7.4. General Maintenance

Any adjustments, maintenance, or repair of the instrument except battery and fuse replacement, should be done only by qualified service personnel.

- Keep your meter dry. If it does get wet, wipe it dry immediately. Liquids might contain minerals that can corrode the electronic circuits.
- Use and store your meter only in normal temperature environments. Extreme temperatures can shorten the life of electronic devices, damage battery and distort or melt plastic parts.
- Handle your meter gently and carefully. Dropping it can damage circuit boards and cases and cause the meter to work improperly.
- Keep your meter away from dust and dirt, which can cause premature wear of parts.
- Wipe your meter with a damp cloth occationally to keep it looking new. Do not use harsh chemicals, cleaning solvents, or strongly detergents to clean the meter.
- Use only a brand-new battery of the same size and type. Always remove an old or weak battery. It can leak chemicals that destroy electronic circuits.

Modifying or tampering with your meter's internal components can cause a malfunction and might invalidate its warranty.

All rights, also for translation, reprinting and copy of this manual or parts are reserved.

Reproduction of all kinds (photocopy, microfilm or other) only by written permission of the publisher.

This manual considers the latest technical knowing. Technical changing which are in the interest of progress reserved.

We herewith confirm, that the units are calibrated by the factory according to the specifications as per the technical specifications. We recommend to calibrate the unit again, after 1 year.

© PeakTech® 07/2021 MP/Mi/Ehr